Skip to content
Advances in Decision Sciences (ADS)

Advances in Decision Sciences (ADS)

Published by Asia University, Taiwan; Scientific and Business World

  • About This Journal
    • Aim and Scope
    • Abstracting and Indexing
    • Editorial Board
    • Editorial Workflow
    • Publication Ethics
    • Paper Submission
    • Manuscript Format
    • Manuscript FAQ
    • Subscription Information
  • Editors Menu
    • Editors’ Roles and Responsibilities
    • Handling a Manuscript
    • Peer Review at ADS@AU
    • English Editing
  • Special Issues
    • About Special Issues
    • Editorial Board Special Issues
    • Preparing a Call for Papers
    • Promoting a Call for Papers
    • Special Invitation
    • Special Issues FAQ
    • Published Special Issues
  • Table of Contents
    • Table of Contents for Year 2024
    • Table of Contents for Year 2023
    • Table of Contents for Year 2022
    • Table of Contents for Year 2021
    • Table of Contents for Year 2020
    • Table of Contents for Year 2019
    • Table of Contents for Year 2018
    • Archive Contents for Year 1997 to 2017
      • Table of Contents for Year 2017
      • Table of Contents for Year 2016
      • Table of Contents for Year 2015
      • Table of Contents for Year 2014
      • Table of Contents for Year 2013
      • Table of Contents for Year 2012
      • Table of Contents for Year 2011
      • Table of Contents for Year 2010
      • Table of Contents for Year 2009
      • Table of Contents for Year 2008
      • Table of Contents for Year 2007
      • Table of Contents for Year 2006
      • Table of Contents for Year 2005
      • Table of Contents for Year 2004
      • Table of Contents for Year 2003
      • Table of Contents for Year 2002
      • Table of Contents for Year 2001
      • Table of Contents for Year 2000
      • Table of Contents for Year 1999
      • Table of Contents for Year 1998
      • Table of Contents for Year 1997
  • Contact Us
  • Home

A Decision Science Approach using Hybrid EEG Feature Extraction and GAN-Based Emotion Classification

A Decision Science Approach using Hybrid EEG Feature Extraction and GAN-Based Emotion Classification

Title

A Decision Science Approach Using Hybrid EEG Feature Extraction and GAN-Based Emotion Classification

Authors

  • Oshamah Ibrahim Khalaf
    Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad,Iraq
  • Ashokkumar. S.R
    Sri Eshwar College of Engineering, Coimbatore, India-641202
  • S.Dhanasekaran
    Sri Eshwar College of Engineering, Coimbatore, India-641202
  • Ghaida Muttashar Abdulsahib
    Department of Computer Engineering, University of Technology, Baghdad, Iraq
  • Premkumar. M
    SSM Institute of Engineering and Technology, Dindigul, India

Abstract

Purpose: Emotions play an essential role in human life and they profoundly influence behavior, decision-making, and well-being. This approach aims to classify human emotions by using Generative Adversarial Networks (GAN) and hybrid Electroencephalography (EEG) features with the DEAP dataset.
Study design/methodology/approach: The proposed system addresses the limitations of traditional classification techniques by generating synthetic hybrid features that capture additional information about emotional states. Informed by decision science principles, the system recognizes that emotions heavily influence human decision-making processes.
Findings: The process consists of data collection, pre-processing, feature extraction, GAN training, hybrid feature generation, and classification. The DEAP dataset is pre-processed by using Independent Component Analysis (ICA) and Wavelet Transform to remove artifacts. A GAN model is trained to generate synthetic features that mimic the distribution of real EEG signals. The hybrid features are generated by combining the real EEG features and synthetic features.
Originality/value: The performance of the classification system is evaluated using accuracy at 97.4%, precision at 97.22%, recall at 96.8%, and F1 score at 97.08%. By leveraging EEG signals, the proposed system shows promise in enhancing the accuracy of emotion classification, opening up exciting avenues for future research in this domain.

Keywords

EEG, Emotions, DEAP Data, GAN, Independent Component Analysis

Classification-JEL

I12; I14

Pages

172-191

https://doi.org/10.47654/v27y2023i1p172-191

Post navigation

Previous PostA Decision Science Approach using Hybrid EEG Feature Extraction and GAN-Based Emotion Classification

Submit Paper

Register / Submit




Special Issue Information

About Special Issues

Categories

ISSN 2090-3359 (Print)
ISSN 2090-3367 (Online)

Asia University, Taiwan

Scientific and Business World

4.7
2023CiteScore
 
86th percentile
Powered by  Scopus
SCImago Journal & Country Rank
Q2 in Scopus
CiteScore 2023 = 4.7
CiteScoreTracker 2024 = 8.5
SNIP 2023 = 0.799
SJR Quartile = Q1
SJR 2024 = 0.814
H-Index = 20

Flag Counter
Since July 28, 2021

Powered by Headline WordPress Theme
Go to mobile version