Skip to content
Advances in Decision Sciences (ADS)

Advances in Decision Sciences (ADS)

Published by Asia University, Taiwan; Scientific and Business World

  • About This Journal
    • Aim and Scope
    • Abstracting and Indexing
    • Editorial Board
    • Editorial Workflow
    • Publication Ethics
    • Paper Submission
    • Manuscript Format
    • Manuscript FAQ
    • Subscription Information
  • Editors Menu
    • Editors’ Roles and Responsibilities
    • Handling a Manuscript
    • Peer Review at ADS@AU
    • English Editing
  • Special Issues
    • About Special Issues
    • Editorial Board Special Issues
    • Preparing a Call for Papers
    • Promoting a Call for Papers
    • Special Invitation
    • Special Issues FAQ
    • Published Special Issues
  • Table of Contents
    • Table of Contents for Year 2024
    • Table of Contents for Year 2023
    • Table of Contents for Year 2022
    • Table of Contents for Year 2021
    • Table of Contents for Year 2020
    • Table of Contents for Year 2019
    • Table of Contents for Year 2018
    • Archive Contents for Year 1997 to 2017
      • Table of Contents for Year 2017
      • Table of Contents for Year 2016
      • Table of Contents for Year 2015
      • Table of Contents for Year 2014
      • Table of Contents for Year 2013
      • Table of Contents for Year 2012
      • Table of Contents for Year 2011
      • Table of Contents for Year 2010
      • Table of Contents for Year 2009
      • Table of Contents for Year 2008
      • Table of Contents for Year 2007
      • Table of Contents for Year 2006
      • Table of Contents for Year 2005
      • Table of Contents for Year 2004
      • Table of Contents for Year 2003
      • Table of Contents for Year 2002
      • Table of Contents for Year 2001
      • Table of Contents for Year 2000
      • Table of Contents for Year 1999
      • Table of Contents for Year 1998
      • Table of Contents for Year 1997
  • Contact Us
  • Home

A Technical Indicator for a Short-term Trading Decision in the NASDAQ Market

A Technical Indicator for a Short-term Trading Decision in the NASDAQ Market

Title

A Technical Indicator for a Short-term Trading Decision in the NASDAQ Market

Authors

  • Mohammed Bouasabah
    Department of Management Sciences, National School of Business and Management,
    Ibn Tofail University, Morocco
  • Oshamah Ibrahim Khalaf
    Department of Solar, Al-Nahrain Research Center for Renewable Energy,
    Al-Nahrain University, Iraq

Abstract

Purpose: The objective is to employ a stochastic model to develop a new technical analysis indicator that could compute the variation of any index. We demonstrate the superiority and applicability of our proposed model and show that our proposed indicator could help investors and market analysts to anticipate the market trend in the short term and make better trading decisions by using our proposed model to analyze the variation of the NASDAQ Composite Index (IXIC).
Design/methodology/approach: This study uses a stochastic process without mean-reverting property to develop a stochastic model that could compute the variation of any index. To show the superiority and applicability of our proposed model in computing the variation of any index, we employ our proposed model to compute the daily closing values of the IXIC over 10 years and derive the variation of the IXIC index.
Findings: Our findings indicate that, based on the mean absolute percentage error, the calibrated model we proposed provides a more accurate estimate of the short-term index that outperforms both the simple moving average and the MACD in predictive accuracy. It delivers a robust anticipation of the overall market trend by offering a 95% confidence interval for the value of the composite NASDAQ index.
Practical Implications: Our proposed indicator could help investors and market analysts to anticipate the market trend in the short term and make better trading decisions. Our proposed model provides market analysts with a forecasting tool by using our proposed technical analysis indicator to anticipate the market trend, which outperforms some traditional indicators of technical analysis, including Simple Moving Averages and Moving Average Convergence Divergence.
Originality/value: Our approach, results, and conclusions are original and new in the literature. Our proposed model is a new technical indicator for predicting any index based on a stochastic process, which has been found to outperform some classical indicators.
This research makes significant contributions to the field of decision sciences because the indicator we have developed plays a crucial role. It enables better buying and selling decisions based on market trend predictions estimated by using our proposed model. In this way, the indicator offers added value to professionals in making investment decisions.
The results of this research work contribute to the development of new technical analysis indicators. Here, the IXIC index is an example, the use of this indicator is wider and could concern any stock market index and any share. So, this work enriches the literature and opens up new avenues for any researcher who wants to use stochastic processes to develop new technical indicators for different financial assets.

Keywords

NASDAQ Composite, Technical Analysis Indicator, Stochastic Modeling, Brownian Motion, Nasdaq Stock Market, Prediction interval.

Classification-JEL

60G25, 60J65, 91B70, 91G15, 91G30

Pages

1-13

How to Cite

bouasabah, mohammed, & Ibrahim Khalaf, O. (2023). A Technical Indicator for a Short-term Trading Decision in the NASDAQ Market. Advances in Decision Sciences, 27(3), 1-13.

https://doi.org/10.47654/v27y2023i3p1-13

Post navigation

Previous PostA Technical Indicator for a Short-term Trading Decision in the NASDAQ Market

Submit Paper

Register / Submit




Special Issue Information

About Special Issues

Categories

ISSN 2090-3359 (Print)
ISSN 2090-3367 (Online)

Asia University, Taiwan

Scientific and Business World

4.7
2023CiteScore
 
86th percentile
Powered by  Scopus
SCImago Journal & Country Rank
Q2 in Scopus
CiteScore 2023 = 4.7
CiteScoreTracker 2024 = 8.5
SNIP 2023 = 0.799
SJR Quartile = Q1
SJR 2024 = 0.814
H-Index = 20

Flag Counter
Since July 28, 2021

Powered by Headline WordPress Theme
Go to mobile version